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Abstract 

X-ray diffraction profiles and Fourier coefficients are 
given for particles distributed according to experi- 
mentally verified size distributions. Calculations are 
based upon the log normal distribution of sphere 
diameters and intercept lengths in addition to a nor- 
mal distribution of column heights. It is found that 
the diffraction profile is not sensitive to the fine details 
of the distribution but rather the mean column height 
and the column-height variation coefficient. Errors in 
particle-size determinations will result from an 
improper choice of the variation coefficient. Two sim- 
plified models are given that describe the diffraction 
profiles for a large range of variation coefficients. 

Introduction 

Interest in the use of X-ray diffraction to obtain 
particle-size information can be traced to Scherrer 
(1918). Subsequent contributions were made by 
Stokes & Wilson (1942) and Warren & Averbach 
(1950, 1952). The early work made use of either the 
full width at half maximum or the integral breadth 
while the later works tended to make use of a Fourier 
analysis of the full diffraction profile. A complete list 
of contributors would cover several pages. Recently, 
Adler & Houska (1979) and Houska & Smith (1981) 
described procedures for obtaining particle size (and 
strain) for a spherical shape of average diameter, by 
using non-linear least-squares fitting routines. Again, 
profile information is required, although full profiles 
are not required. 

There is very little literature that deals with the 
effect of different column-sized distributions upon the 
particle-size Fourier coefficients or on the shape of 
measured line profiles. A major goal of this paper is 
to assess the importance of the form of the column- 
height distribution on the Fourier coefficients and 
X-ray profiles. 

Considerable experimental information is available 
on particle-size distributions from quantitative optical 
microscopy. This is based largely upon spherical 
grains in metallic systems (Saltykov, 1961). These 
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data are generally best described by log normal size 
distributions. X-ray diffraction profiles are relateable 
to coherent subgrain distributions rather than grains 
and such determinations have been interpreted as an 
average distance between dislocations along the 
various crystallographic directions. 

We will make use of the directly observed distribu- 
tions obtained by microscopy and assume that the 
subgrains follow the same well known distributions. 
A log normal distribution of spheres has been found 
to be valid for many reactions in metallic systems 
(Saltykov, 1961) and will be applied here as one of 
the important functions. Recently, there has been an 
interest in the structure of films. Here, a normal 
distribution of columnar grains appears to be justified 
when the surface is irregular. If the subgrains are 
spherical, the X-ray diffraction profiles associated 
with small particle size requires the distribution of 
line intercepts for each spherical subgrain. This is 
directly relateable to the column distribution required 
in diffraction theory (Adler & Houska, 1979). The 
derivation of the column-height distribution from a 
grain-size distribution is readily obtained with a 
spherical shape. Only spherical and columnar sub- 
grains are considered here. 

Guinier (1963) notes, in an earlier paper, that it is 
not feasible to determine experimentally the shape 
of subgrains of non-uniform size, by using only one 
profile of the X-ray diffraction pattern. It will be seen 
later that the most readily available information from 
X-ray particle-size broadening is the average column 
length and the size-variation coefficient perpendicular 
to the reflecting planes and additional detail about 
particle shape is not readily obtainable from X-ray 
particle-size broadenin 8. 

Distribution functions 

The empirically determined log normal distribution 
of grain sizes is applied to subgrain size. This is 

P(ln D) d(ln D ) =  [(27r) 1/2 In o'~] -~ 

x exp { - l [ ( ( ln  D - I n  Dg)/ln trg)] 2} d(ln D) 
(1) 
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with a mean diameter of 

CO)= Og exp [½(In %)2]. (2) 

The most probable subgrain is Dg exp [ - ( l n  org)2] 
and Dg is the geometric mean defined as 

Dg =exp ((ln D)). (2a) 

Similarly, org is the geometric standard deviation. The 
column-length distribution associated with (1) is 
readily derived by making use of the column-length 
distribution from a single sphere of diameter D: 

p(L)=2L/D 2, L<_D 
(3) 

p (L)=0 ,  L > D .  

By using relation (A-1) of Appendix A, the required 
distribution function is evaluated as 

p(L) dL=  {L exp [2(ln o'g)2]/D 2} 

× erfc {2-1/2[(ln L - l n  Dg)/ln % 

+ 2 In %]} dL. (4) 

This gives an average chord length of 

(L) = 2Dg exp [½(In org)2] = 2(D). (5) 

Equation (5) contains the same factor (2) that is 
obtained in calculating the average column length 
from a single sphere. From the relation (L)= (d)N3 
and Dg =(d)3o, where N3 is the average column 
height and (d) is the average d spacing for the first 
order of the reflecting planes, and the substitution of 
(5) in (4), the probability distribution of column 
heights in terms of dimensionless distance j, 
p(j) d j ( j=  L/(d)), becomes 

p(j) dj = (4/9)( j /N 2) exp [3(ln org)2] 

x erfc 2-1/2[(lnj-In N3o)/ln O-g 

+ 2 In %] dj. (6) 

The variation coefficient of the column-height distri- 
bution, Vo which gives a measure of the spread of 
the distribution (Saltykov, 1961), is given by 

Vc = [j2p(j) dj_(j)2]l/2/ (j) (7) 

or in this case 

=~{~ exp [(ln org)2]-(4/9)}1/2. (8) Vc 3 1 

The cell-height distribution (6) is normalized and 
goes to the following limits as In org ~ 0: 

{ = 2j/ N2o, j <-- N3D 
p(j) dj O, j>  N3o. (9) 

This causes the log normal distribution to become a 
6 function localized at N3o giving the column-height 
distribution from a single sphere. Also, the variation 
coefficient of (8) goes to the correct limit of 0.354 as 
In org ~ 0, which is the value for the column-height 
distribution from a single sphere. 

If a normal distribution of columnar subgrains is 
assumed in the case of thin films with some surface 
irregularities, the distribution of column heights is 
given by 

p(j) dj = [ 1/(27r) 1/2 or][2/erfc ( -  N3~/2 '/2or)] 

xexp[-(j-N3~)2/20"2]dj,  , (10) 

where N3~ is the most probable column height. It is 
required that p(0) be zero, which occurs only if N3~ >> 
2a/zor. This condition was identically satisfied for the 
previously discussed log normal distribution. The 
average number of cells per column for the sample, 
N3, is given by 

N3 = N3~+(2/'zr)l/20 " exp [-Nz~/zor 2] 

x [erfc (--N3G/21/20r) ] -1  (11) 

and the variation coefficient, Vo by 

Vc=[o'2/NE+Nac/N3-1] 1/2. (12) 

If N3G/21/2o r is reasonably large, say >2, then 

N3"" N36 
(13) 

Vc -- or / N3. 

By substituting (11) in (10) and simplifying, one finds 

p(j) dj = (N3-  N3~)/0 '2] exp [jN3~/o'2-j2/2or2] dj. 

(14) 

The cell-height distribution of (14) is normalized and 
goes to the limit 

p(j) dj = 6 ( j -  ?43o) dj (15) 

as or~0. This causes the normal distribution to 
become a 6 function localized at j =  N3c,, giving 
columnar grains of height N30 

The column-height distribution associated with a 
normal distribution of diameters of statistically 
spherical subgrains is difficult and cumbersome to 
derive rigorously. Hence, an approximate treatment 
will be followed, which gives a more useable end 
result (Appendix B). Following this treatment, it can 
be shown that 

p(j) dj = (4/9)( j /N 2) e x p  [ 3 o r ' 2 / N 2 ~ ]  

x erfc 2-1/2[ ( j -  N3o)/or' + 2or'/ N3~] dj (16) 

provided subgrain diameters are normally distributed 
by 

p(ln D) d(ln D) 

-- (21/2~or') -1 exp { - I [ ( D -  Dg)/O"] 2} dD, 

(17) 

where Dg = (d)N3c,, (d) being the average d spacing 
for the first order of the reflecting planes. Equations 
(16) and (17) are valid only if N3~/21/2or is sufficiently 
large. The average number of cells per column, N3, 



8 X-RAY PARTICLE-SIZE B R O A D E N I N G  

is given approximately by 

N3~-~N3oexp[½o-'Z/N~o] (18) 

and the variation coefficient, V~, by 

(o- / N3c)-4/9}  1/2. -~ ~{~ exp (19) c 3 1 t2 2 

The cell-height distribution described by (16) goes to 
the limit of the distribution from a single sphere of 
diameter D~, as o-'o 0. 

Particle-size Fourier coefficient and line shape 

The diffracted X-ray intensity from a sample with 
only small particle-size broadening is given by the 
Fourier series (Warren, 1969) 

P'(h3) = Yo{ l+2  n=l ~ AS"c°s[27rn(h3-1)]} ' 

(20) 

where h 3 is the reciprocal-space variable given by 
h 3 = 2(d)sin 0/A, Yo is a scaling parameter, and the 
integer l translates the origin of the h 3 axis to the 
peak maximum of the 001 reflection. A~, is the particle- 
size coefficient. Equation (20) can be written in an 
equivalent integral form (Guinier, 1963): 

P'(h3)/2N3 = Yo~A~cos27r~udu, (21) 

where h~ -- N3(h3 - l) and u = n~ N3. The particle-size 
coefficient, A~, can be written in terms of the column- 
height distribution, p(j) (Warren, 1969): 

c o  

A~=(1/N3) ~ ( j- lnl)p(j)dj .  (22) 
J=l.l 

By differentiating (22), one can show (Warren, 1969) 
that 

dA~/dn[,=o= -1/N3 
and (23a) 

dZA~/dnZ=p(n)/N3 . 

The integral breadth of a reflection, defined as the 
ratio of the peak area to the peak maximum, has been 
shown by Warren (1969) to be 

/3(20) = h~ L cos 0, (23b) 

where h is the wavelength, 0 is the Bragg angle and 
L, an effective dimension perpendicular to the reflect- 
ing planes, is given by Warren (1969) and extended 
here to include the variation coefficient Vc: 

L=(n2)/(n) = N3(1 + V2c). (23c) 

From (23a), (23b) and (23c), a determination of the 
slope of the particle-size coefficient at n = 0 along 
with the integral breadth can be used to determine 
the average column height as well as the variation 
coefficient of the column-height distribution, perpen- 
dicular to the reflecting planes. 

From (23a), it is evident that the second derivative 
of the particle-size coefficient gives the column-height 

distribution. Simple physical reasoning requires that 
p(0) = 0, a condition that sometimes is ignored. The 
particle-size coefficient for those distributions pre- 
viously discussed can be determined by using (22). 
The results of such calculations are listed below: 

A~(SL) =½ erfc 2-~/2[(1n n - I n  N3o)/ln o-g - I n  o-g] 

-½(n/N3) erfc 2-1/2[(1n n 

- I n  N3o)/ln o-e,] 
+ (2/27)(n3/N~) exp [3(ln o%)2] 

x erfc 2-'/2[(ln n - I n  N3o)/ln o% 

+21n O-g] 

As.(CN) = [ N3 erfc ( -  N3~/2'/2o)] -1 

x {(2/7r)1/2o- x exp [ - ( n  - N3G)2/2o -2] 

+ (N3G - n) erfc (n - N3o)/2'/zo-]} 

As.( SN) --- ½ erfc 2-1/2[(n - N3~)/ o-'- o"/N3c] 

- ½( n / N3) erfc 2-'/2[ ( n - N3G)/o-'] 

+(2/27)(n3/N])exp [30- ,2 / N3c]2 

x erfc 2- ' /2[(n - N3~)/o-' + 2o-'/N3~], 

(24) 

where A~(SL) is the particle-size Fourier coefficient 
for a log normal distribution of spherical grains, 
A~(CN) is the Fourier coefficient for a normal distri- 
bution of column heights and A~.(SN) is the Fourier 
coefficient for a normal distribution of spherical 
grains. The Fourier coefficients can be checked for 
consistency in two ways: (i) by checking for their 
limiting values as their respective distribution width 
parameters tend to zero and (ii) by verifying that 
equations (23a) are identically satisfied. Both 
coefficients, A~(SL) and A~(SN), tend to the correct 
limit of the Fourier coefficient, deriveable from a 
column-height distribution from a single sphere 
(Adler & Houska, 1979) as In 0% and o-' tend to zero, 
i.e. as In o-g ~ 0 or o-'~ 0 

A~n(SL)=AS(SN){=I-n/N3+an3/N3,  n<-3N3 
=0,  n>~N3. 

(25) 

Similarly, as o '~0 ,  the Fourier coefficient A~(CN) 
tends to the limit of the Fourier coeflqclent derivable 
from a single column height (Warren, 1969), i.e. o- ~ O, 

= l - n / N 3 ,  n <-N3 (26) 
As,,(CN) = 0, n > N3. 

All three Fourier coefficients, A~(SL), A~(CN), 
A~(SN), can be shown to satisfy (23a) though the 
approximation N3o/2o- 1/z' is large must be made use 
of in the case of A~(SN). 

To determine the line shape, from small particle 
size with the three different kinds of size distributions, 



SATISH RAO AND C. R. HOUSKA 9 

the Fourier integral of (21) must be evaluated using 
the three different forms of the Fourier coefficient, 
A~(SL), A~(CN) and A~(SN). A~(SL) cannot be 
transformed analytically and a fast Fourier transform 
routine must be used. The line profile derived from 
A~(SL) is denoted by cP(SL). An exact Fourier trans- 
form can be obtained from A~(SN) giving the follow- 
ing complicated expression: 

cP( SN) = P'( h3)/ N 2 Yo 

= erfc ( -y ){x  -2 +8 exp [3/2y2]x -4} 

+ Re w(z) exp [_y2] 

× { X - 2  y,,2_F exp [3/2y2]( --8X-4q-4x-2y'2 
-4x-2y"2 +4x2y"6)} + Im w(z) exp [_y2] 

× {x -1 - y'x -1 + exp [3/2y 2] 

x (-~x-3y'-F 4 X - 1  ,3 4 X - 1  , ,,2 Y --~ y Y -4xy"4y')} 

+ {exp [_y2 + 3 / 2y2]/(2 ~r 1/2) } 

r 8  --2 i t t - -  16 t i t31 xi~x y y  ±~vYY t, (27) 

where x=2qrh °, y ~  N30/20. '1/2, y'= NaD/N3, y"= 
0.'/Na, z = 2"rrl/Eh~0.'/ N 3 -  iN30/ 20. '1/2, w(z)= e-Z~x 
erfc ( - iz )  (Abramowitz & Stegun, 1965) and Re and 
Im denote real and imaginary parts, respectively. 
Once again, taking the limit of ~ ( S N )  as or'--> 0, 

crp(SN) = [9/8(,n-ho3)2]{ 1 + sin 2 'rrho3/(~ho3) 2 

× [1 - 2,n'ho3 cot ('mho3)]} (28) 

gives a result identical to the X-ray line shape from 
a spherical subgrain of average column height, N3. 

3/ , ,o  3 ~/- /,, Here, ho3 is equal to ~,,3 =~1,3,,3. The IMSL (1982) 
routine MERRCZ can be used to generate the values 
of the function w(z), which is related to the error 
function complement of a complex argument 
(Abramowitz & Stegun, 1965). Likewise the Fourier 
coefficient A~(CN) can be transformed analytically 
and the resulting line shape is given by 

• (CN) = P'(ha)/N 2 Yo 

= 4/(27rh~)-2{1-[exp (-u2) /erfc  (-Uo)} 

x Re w(Trh~/ul-iuo)}, (29) 

where Uo = N3o/(20.1/2), ul = N3/(2o'1/2). As the 
parameter o---> 0, the resulting line shape tends to the 
well known limiting value 

~(CN) s i n  2 o o 2 = ~rha/(Trh3), (30) 

which is the X-ray line shape from a single crystal of 
constant column height, N3. 

S i m p l i f i e d  m o d e l s  

In Fig. 1, the different column-height distributions 
along with their particle-size Fourier coefficients and 
line shapes are plotted. For all the distributions, the 
average column height, N3, was kept a constant at 
150. The variation coefficient of the log normal distri- 
bution of subgrain diameters, normal distribution of 
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Fig. 1. Computer simulations of (a) the different column-height distributions along with (b) their particle-size Fourier coefficients and 
(c) line shapes. Solid line-single column height (Vc =0), 0)-Gaussian distribution of column heights (Vc = 0.354), +-spherical 
subgrain ( V~ = 0.354), 03-log normal distribution of spherical subgrains ( V~ = 0.52), x-Gaussian distribution of spherical subgrains 
(V~ =0.52). 
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subgrain diameters and the normal distribution of 
column heights, was kept constant, with a value of 
0.354. Notice that the variation coefficient of the 
column-height distribution would be greater than the 
variation coefficient of the diameters of spherical 
subgrains, since the spherical shape itself provides 
some spread to the column-height distribution. For 
example, a variation coefficient of 0-354 in the 
diameter distributions gives a variation coefficient of 
approximately 0.52 in the column-height distribution. 
Experimental data on metallic systems (Saltykov, 
1961) indicate that the variation coefficient of the 
distribution of diameters of grains lies in the range 
0.10-0.60. Taking these values as the limit, then the 
variation coefficient of the column-height distribution 
should lie approximately in the range 0.10-0.80. 

From Fig. 1, it is evident that as the variation 
coefficient of the column-height distribution 
increases, the particle-size coefficient deviates from a 
straight-line behavior (corresponding to a single 
column height) more and more, and the line shape 
becomes sharper near the peak position and 
asymptotic to an h32-type behavior at the tail portion 
of the peak. It is also clear that the two most important 
parameters of the column-height distribution, which 
determine the particle-size coefficient and line shape, 
are the average column height N3 and the variation 
coefficient, V~. For example, a normal distribution of 
column heights with average column height N3 and 
variation coefficient 0.354 gives an almost identical 
behavior for the particle-size coefficient and line 
shape when compared with the spherical distribution 

that has a variation coefficient of 0.354 (see Fig. 1). 
The differences in line shape and particle-size 
coefficient that can be attributed to third- and higher- 
order moments of the column-height distribution are 
almost insignificant, probably within the statistical 
accuracy of the diffraction data. The process of double 
integration of the column-height distribution to 
obtain the particle-size coefficient essentially smooths 
out any fine detail that might exist in the distribution 
functions and reduces the importance of the higher- 
order moments of the column-height distribution. 

In Fig. 2, the column-height distributions along 
with their line shape and particle-size Fourier 
coefficients for a log normal distribution of spherical 
subgrains, a sphere and a single column height are 
plotted. The average column height was kept constant 
for all the three cases. The variation coefficient of 
column heights of the log normal distribution was 
fixed at 0.707. The variation coefficient for a sphere 
and a single column height are 0.354 and 0 respec- 
tively. Both the line shapes and the particle-size 
coefficients show marked differences, illustrating the 
importance of variation coefficient on the line shape 
and the particle-size coefficient. The half width from 
the line shape of the log normal distribution is less 
than half the half width from the line shape of a 
single column height. 

Owing to the above considerations, in X-ray line- 
shape analysis, the modeling of particle-size broaden- 
ing should be such that it incorporates both the 
average column height N3 and the variation 
coefficient Vc. The exact shape of the probability 
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Fig. 2. Computer simulation of (a) the column-height distributions, (b) particle-size Fourier coefficients and (c) line shapes from a log 
normal distribution of spherical subgrains (0-1), a spherical subgrain (+) and a single column height (solid line). Vc = 0.707 for the 
log normal distribution, 0.354 for the spherical subgrain and 0 for the single column height. 
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distribution of column heights is not that critical. Use 
of the spherical distribution for particle-size modeling 
assumes that the variation coefficient of the column- 
height distribution is fixed at 0.354. In order to remove 
this restriction, two models are suggested: one treat- 
ing the range 0-0.57 of Vc and the second treating 
the range 0-36-0.70 of V~. For V, > 0.707, more com- 
plicated models are required such as the log normal 
distribution of spherical grains. However, the limit 
0.70 is not expected to represent a true restriction. 

Model I. 0 <- V~ <- 3 -1/2 

The column-height distribution is assumed to be 
rectangular and can be written as 

t 
=(2x3X/2V~N3)-a dj, 

p ( j )  dj N 3 ( 1 - 3 ~ / 2 V ~ ) < j < N 3 ( l + 3 1 / 2 V c )  
(31) 

[ = 0, otherwise 
such that V~ < 3 -1/2. 

Here V~ is the variation coefficient of the column- 
height distribution and N3 is the average column 
height. The particle-size coefficient and line shape 
become simple for the probability distribution of (31) 
and are given by 

= 1 - n / N 3 ,  0 < n <- Na(1-31/Ev~) 
(1 +31/2V~) 2 n 1 +31/2Vc 

4x  31/2Vc Na2X31/2V~ 
(AS.) ~ n 2 1 

+ 
S 2 4 x 3 1 / 2 V c  ' (32) 

N3(1 -  31/2 V~)--- n_< N3(1 + 31/2Vc) 

= 0, otherwise 
and 

Pi( h3)/ N 2 Yo = 2(27rh~)-2- (2 /3  ~/2 V~) (27rh~) -3 

x sin 2 x 31/2Vc'a'h~ cos 27rh~. 
(33) 

As Vc ~ 0, (33) tends to the correct limit of the line 
shape from a single crystal of uniform column height 
N3, given by (30). 

Model II. 8 -1/2 -< V¢ --< 2 -1/2 

The subgrain is assumed to be spherical in shape 
and a rectangular diameter distribution is assumed 
for the subgrains. The column-height distribution 
from such an assumption can be calculated as (see 
Appendix A) 

• -~(j/N2)(1 - 3 V2), 

O<_j < 3 N 3 ( 1 -  31/2 Vg) 

= (2/3 ×3'/2N3 Vg) 
p ( j )  dj 

- [4j/9(1 + 31/2Vg)31/2VgN2], 

33/3(1 - 31/2 Vg) < j <- 3N3(1 + 31/2Vg) 

,= 0, otherwise, (34) 
and 0_< Vg<_3-1/2. 

Here, N3 is the average column height and Vg is 
the variation coefficient of the original subgrain 
diameter distribution. The variation coefficient of the 
column-height distribution can be shown to be equal 
to 

Vc =3{1 + V 2 ) / 2 - 4 / 9 }  1/2. (35) 

The particle-size coefficient and line shape can be 
calculated as 

(A~) I1 

and 

1 - n~ N3 + ( 4 / 2 7 ) [ 1 / ( 1 - 3  V2g)] 

x ( n 3 / N ~ ) ,  
O<_ n <_3N3(1-31/2Vg) 

1 (1+31/2Vg) 2 1 1+31/2Vg n 

4 31/2 gg 2 31/2 Vg 

1 n 2 

3 x31/2Vg N~ 

2 1 n 3 
m 

27 (1 + 31/2Vg)31/2Vg N 3' 

~ 0 ,  

(36) 

3N3(1-31/2Vg) <_ n _ 3N3(1 + 31/2 Vg) 

otherwise, 

P~i(h3) 
N Vo 

- -  - 2(27rh~) -2 + 32[9(2 7rh ~)4] -1 

x ( 1 - 3  V2) -1 sin 2 7rho3(1 - 31/2 Vg) 

- 1619(2.a-h~)4]-'[31/2Vg(1 + 3a/2Vg)] - '  

x sin 2 x 31/2 Vgcrho3 sin 2'n'ho3. (37) 

As Vg ~ 0, (37) tends to the correct limit of the line 
shape from a spherical subgrain of average column 
height, N3, given by (28). 

Fig. 3 illustrates the line shape and particle-size 
coefficient from models I and II, for a variation 
coefficient, V~, of 0.50, as compared with the line 
shape and particle-size coefficient from a log normal 
distribution of spherical grains with the same vari- 
ation coefficient. The three column-height distribu- 
tions are also plotted. The discrepancies among the 
three particle-size coefficients and among the three 
line shapes are minimal, even though the original 
column-height distributions show marked differences. 
The differences in the line shape are minimal even at 
the tail portion of the peaks where the percent 
differences are greatest. The simple form of the par- 
ticle-size coefficients from (32) and (36) can be very 
useful in X-ray line-shape analysis, because particle- 
size broadening can be introduced by multiplication 
with the strain coefficients. This provides the required 
mathematical convolution, which is treated in the 
following paper. 
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Discussion 

X-ray particle-size broadening is determined by the 
column-height distribution, perpendicular to the 
reflecting planes. The two parameters of the distribu- 
tion that most affect the line shape are the average 
column height, N3, and the variation coefficient of 
the column height distribution, V~. Different combina- 
tions of subgrain shape and size distribution can give 
identical column-height distributions, thereby mak- 
ing a determination of shape impossible from a single 
profile. In principle, the column-height distribution 
perpendicular to the reflecting planes can be deter- 
mined, although realistically only the first- and 
second-order moments of the distribution can be 
obtained experimentally. The average column height, 
N3, determined from the peak half width using the 
Scherrer equation (Scherrer, 1918) can be in error by 
more than 50%, for large values of Vc. It gives the 
best results as V~ --> 0. A determination of the particle- 
size coefficient for different values of n would give 
the column-height distribution, unambiguously. But, 
the particle-size-coefficient determination is prone to 
large errors at low and high n values (Warren, 1969). 
The frequently made assumption of a Cauchy shape 
for particle-size broadening (de Keijser, Langford, 
Mittemeijer & Vogels, 1982) is incorrect, since the 
true shape continuously varies with V~, with a more 
Cauchy-like behavior at larger values of V~. Non- 
linear least-squares fitting procedures can be used to 
determine the two parameters of the column-height 
distribution very accurately when other kinds of 
specimen broadening exist. This method is superior 
to the Fourier analysi~ technique when the full diffrac- 
tion profile is not available (Houska & Smith, 1981). 

o ~ ' - I  

R 
! 
" 

I 

m m c5 am 
Xm [] 

x m 

E 

.... I I I I .... I 

0,4 0,8 1,2 1,6 2,0 
n/N 3 

(a) 

Furthermore, the availability of analytical forms 
allows one to obtain that background correction that 
minimizes the misfit error. This procedure is not avail- 
able in conventional integral breadth measurements. 
Finally, particle-size broadening and non-uniform 
strain broadening can be separated very easily, by 
non-linear least-squares fitting of two orders of an 
hkl reflection. 
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8000933. 

APPENDIX A 

The column-length distribution from a single sphere 
of diameter D is given by (3). The column-length 
distribution, from a distribution of subgrain 
diameters, p(D)dD is given by (Adler & Houska, 
1979) 

p(L) dL=2LSp(D)dD/D 2. (A-l) 
L 

If the subgrain diameter distribution is log normal in 
character, then the column-length distribution can be 
calculated as 

co 

p(L) dL=  2L ~ (2'/2rr In tr,) -1 
L 

x exp {- l [ ( ln  D - l n  D,) / ln  or,]2} D -3 dD. 

(A-2) 

Integration of (A-2) by parts produces the column 
length distribution, as given by equation (A-l). 
Similarly, for a rectangular distribution of subgrain 
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Fig. 3. (a) The column-height distributions, (b) particle-size Fourier coefficients and (c) line shapes from a log normal distribution of 

spherical subgrains (m), model I (+) and model II (x).  Vc = 0-50 for all three distributions. 
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diameters, the column height distribution is equal to 

~2N3( l + 3t/2 Vg) 
=2j  ~ 1/2 (3X31/2VgN3)-ID -2 dD, 

~N30-3 vg) 

O<_j <_3 N 3 ( 1 -  31/E vg) 

P(J) dj = 2j  ~2N3(1+~ 3'/2Vg) (3 X 3~/2VgN3)-ID -2 dD, 
J 

3 N 3 ( 1 -  31/2 V~) <_j <_-~ N3(1 + 31/2 Vg) 

=0,  j>3N3(l+31/2Vg) .  

A P P E N D I X  B 

Column-height distribution from a normal distribu- 
tion of subgrain diameters is derived here using an 
approximate treatment. Initially the log normal distri- 
bution of diameters is approximated by a normal 
distribution of diameters. A log normal distribution 
of diameters can be written as 

p ( l n D ) d ( l n D )  

= (21/2¢r In O'g) -1 

x exp {-½[(ln D - I n  Dg)/ln org]2} don  D). 
(B-I) 

In D can be approximated as 

ln D = ln [ Dg + ( D - Dg ) ] 

-'-In D g - 2 ( D - D g ) / [ 2 D g  + ( D -  Dg)] 

= ln Dg + ( D -  Ds) /  D r (B-2) 

Also, In trg can be approximated as 

In org = In [1 + (org- 1)]-~ org- 1. (B-3) 

From (B-2), 

d ( l n  D) = d(ln D - I n  Og)~- -d[ (O-Og) /Og]  

, = Dg 1 dD. (B-4) 

Substituting (B-4), (B-3), (B-2) in (B-l)  and writ- 
ing D~(org-1) as or', one can approximate 
p(ln D) d(ln D) as 

p(ln D) d(ln D) 

=(21/2"n'o") -1 e x p { - ½ [ ( D - D g ) / O " ] 2 } d D ,  (B-5) 

which demonstrates that the linear approximations 
(B-2), (B-3), (B-4) lead to the normal distribution. 
Note that (B-5) is valid only for small values of In org 
or for large values of Dg/tr'. The column-height distri- 

bution for a log normal distribution of subgrain 
diameters is known from (6): 

p( j )  dj = (4 /9) jN~ 2 exp [3(ln org)2] 

x erfc 2 -1 /2 [ ( ln j - In  N3o) / ln  o-g 

+21n org] dj. 

With the approximations of (B-2), (B-3), (B-4) in 
(6), the following equation is obtained for the proba- 
bility distribution of column heights: 

p( j )  dj = (4/9)jN32 exp [3or'2/N32o] 

x erfc 2-1 /2( j -  N3G / or'q- 2or'/NaG ) dj, 

(B-6) 

where N3o = D J ( d ) .  By making the same approxi- 
mations as for (B-2), (B-3), (B-4) in the particle-size 
coefficient for a log normal distribution of subgrain 
diameters, A~(SL), the particle-size coefficient, 
A~,(SN) can be shown to be equal to 

A~,(SN) -~ ½ erfc 2-1/2(n - N3G)/or '-  or'/N3G] 

-½(n/  N3) erfc 2-1/2(n-  N3o)/or'] 

+ (2/27)( n 3 / N  3) exp [3 or'2/N2c] 

x erfc 2-1/2(n - N3o)/or'+ 20"/N3o]. 

(B-7) 
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